Measuring Health Inequalities

S Harper PhD course: Advanced Social Epidemiology, 19th Aug – 23rd Aug, 2019 University of Copenhagen

Part 2: Measuring the "Inequality" in Social Inequality

Overview

- Why it matters
- Conceptual Issues
 - Inequality vs. inequity
 - Issues for measurement
- Value judgments and why they are unavoidable

Why Monitor Health Inequalities?

- Natural complement to monitoring overall health
- Essential for detecting important changes in risk
- Opportunity to evaluate etiological explanations for health inequalities
- Evaluating the distributional impacts of public health interventions and medical innovations
- Crucial for measuring the responsiveness of health care systems to those most in need

Example: Distributional effects of Mexican health reforms

"inequalities in composite coverage [of interventions] have been greatly reduced over the past 5 years, since coverage has increased the most in the poorest states and for the poorest deciles of the population."

-Gakidou et al. Lancet (2006)

More recent example in USA

Effect of Massachusetts healthcare reform on racial and ethnic disparities in admissions to hospital for ambulatory care sensitive conditions: retrospective analysis of hospital episode statistics

Danny McCormick,¹ Amresh D Hanchate,^{2, 3} Karen E Lasser,³ Meredith G Manze,³ Mengyun Lin,³ Chieh Chu,³ Nancy R Kressin^{2, 3}

- Evaluated impact of MA reform on inequalities in hospital admissions.
- Compared MA to nearby states: NY, NJ, PA.
- Intervention "worked": % uninsured halved (12% to 6%) from 2004-06 to 2008-09.

McCormick et al. BMJ (2008)

Perspective of the WHO Commission

BOX 16.3: TOWARDS A COMPREHENSIVE NATIONAL HEALTH EQUITY SURVEILLANCE FRAMEWORK

Org

HEALTH INEQUITIES

Include information on:

health outcomes stratified by:

- sex

- at least two socioeconomic stratifiers (education, income/wealth, occupational class);
- ethnic group/race/indigeneity;
- other contextually relevant social stratifiers;
- place of residence (rural/urban and province or other relevant geographical unit);

the distribution of the population across the sub-groups;

a summary measure of relative health inequity: measures include the rate ratio, the relative index of inequality, the relative version of the population attributable risk, and the concentration index;

a summary measure of absolute health inequity: measures include the rate difference, the slope index of inequality, and the population attributable risk.

Closing the gap in a generation

WHO Commission (2008)

Inequalities in health are based on observations

- Poor people die younger than rich people
- Low social class infants have lower birth weight
- Smokers get more lung cancer than non-smokers
- Women live longer than men

We are (relatively) good at measuring inequalities

Inequities in health are based on ethical judgments

- Should poor people die younger than rich people?
- Should low social class infants have lower birth weight?
- Should smokers get more lung cancer than nonsmokers?
- Should women live longer than men?

Inequities are much harder to measure

Anatomy of an Inequality

Figure 1: Differences, Disparities, and Discrimination: Populations with Equal Access to Health Care.

Adapted from McGuire et al. Health Services Research, 2006

Inequality is an ambiguous concept

"If a concept has some basic ambiguity, then a precise representation of that ambiguous concept must

preserve that ambiguity...This issue is quite central to

the need for descriptive accuracy in inequality

measurement, which has to be distinguished from fully

ranked, unambiguous assertions."

-Amartya Sen, On Economic Inequality, 1997

Inequality Measure	Symbol	Absolute or Relative	Reference Group	All Social Groups	Reflect SES Gradient	Social Group Weighting	Inequality Aversion Parameter	Graphical Analogue
Total Disparity								
Inter-Individual Difference	IID	Variable	ATBO ^a	No	No	No	Yes	No
Individual-Mean Difference	IMD	Variable	Average	No	No	No	Yes	No
Social Group Disparity								
Absolute Difference	AD	Absolute	Best	No	Yes	No	No	Yes
Relative Difference	RD	Relative	Best	No	Yes	No	No	Yes
Regression-based Relative Effect	RRE	Relative	Best	Yes	Yes	No ^b	No	Yes
Regression-based Absolute Effect	RAE	Absolute	Best	Yes	Yes	No ^b	No	Yes
Slope Index of Inequality	SII	Absolute	Average	Yes	Yes	Yes	No	Yes
Relative Index of Inequality	RII	Relative	Average	Yes	Yes	Yes	No	Yes
Index of Disparity	ID_isp	Relative	Best	Yes	No	No	No	No
Population Attributable Risk	PAR	Absolute	Best	Yes	No	Yes	No	Yes
Population Attributable Risk%	PAR%	Relative	Best	Yes	No	Yes	No	No
Index of Dissimilarity	ID	Absolute	Average	Yes	No	Yes	No	Yes
Index of Dissimilarity%	ID%	Relative	Average	Yes	No	Yes	No	No
Relative Concentration Index	RCI	Relative	Average	Yes	Yes	Yes	Yes	Yes
Absolute Concentration Index	ACI	Absolute	Average	Yes	Yes	Yes	Yes	Yes
Between Group Variance	BGV	Absolute	Average	Yes	No	Yes	Yes	No
Squared coefficient of Variation	CV ²	Relative	Average	Yes	No	Yes	No	No
Atkinson's Measure	А	Relative	Average	Yes	No	Yes	Yes	No
Gini Coefficient	Gini	Relative	Average	Yes	No	Yes	No	Yes
Theil Index	Т	Relative	Average	Yes	No	Yes	Yes	No
Mean Log Deviation	MLD	Relative	Average	Yes	No	Yes	Yes	No
Variance of Logarithms	VarLog	Relative	Average	Yes	No	Yes	No	No

Summary Table of Advantages and Disadvantages of Potential Health Inequality Measures

^aAll those better off. ^bIn the case of regression-with grouped data.

Measuring Inequality: Some issues to consider

- 1. What to measure? Total vs. Social Group Inequality
- 2. Simple or complex measures of health inequality?
- 3. Scale: Is inequality relative or absolute?
- 4. Weighting: Who counts, and for how much?
- 5. Weighing lives: Do we care where changes in health inequality come from?
- 6. Reference points for measuring inequality: Different from what?

1. Total vs. Social Group Inequality

Health Inequalities: What should we measure?

- Total Health Inequality
 - complement to measurement of average health
 - measured across all individuals
 - avoids normative choice of social groups
 - facilitates unambiguous comparisons over time/place
- Social Group Differences in Health
 - measured across normatively important social groups
 - particular social groups chosen *a priori*
 - provide insights into causal processes linking health and social position

Ethical concern has typically been for social group differences

"Equity in health can be defined as the absence of systematic disparities in health (or in the major social determinants of health) between social groups who have different levels of underlying social advantage/ disadvantage—that is, different positions in a social hierarchy." -Braveman, (2003)

"Health disparities are differences in the incidence, prevalence, mortality, and burden of diseases and other adverse health conditions that exist among specific population groups in the United States."

-NIH Strategic Plan to Reduce and

Ultimately Eliminate Health Disparities, 2001

Health Inequality Between Whom?

Health Distribution

Health Distribution

Adapted from Asasda (2002)

DEMOGRAPHY AND INEQUALITY

The case for monitoring life-span inequality

Focus on variation in age at death, not just average age

By Alyson A. van Raalte¹, Isaac Sasson², Pekka Martikainen^{1,3,4} for instance, the standard deviation, Gini coefficient, or interquartile range. To illus-

- Life-span variation reflects uncertainty in the risk (timing) of death.
- People are generally willing to pay to reduce uncertainty.
- Heterogeneity is crucial for accurate forecasts in insurance and annuity markets, and should be measured.
- Monitoring life-span variation may facilitate early detection of adverse mortality developments and warrant social interventions at younger ages.

Trends in life expectancy and life-span variation for Finnish females, 1971–1975 to 2011–2014

Life expectancy is the average age at death, and life-span variation is the standard deviation, conditional upon survival to age 30, with age-specific death rates frozen at those observed in the given year. See supplementary materials for data and methods, including trends for males (which are qualitatively similar), and robustness checks using alternative measures of life-span variation.

van Raalte et al. (2018)

2. Simple vs. (More) Complex Measures of Inequality

Pairwise comparisons work well for a few groups

% of persons under 65 years of age with health insurance

Source: Data2010

Additional subgroups make summary measures appealing

% of persons under 65 years of age with health insurance

22

Summary measures of inequality definitely necessary

Range-type measure: Ignores the entire distribution

Moving beyond simple group comparisons

- More complex measures look at the entire distribution.
- E.g., Lorenz curve for income, health, or any X:

Consequences of metric for interpretation

Monitoring equity in vaccination coverage: A systematic analysis of demographic and health surveys from 45 Gavi-supported countries

Catherine Arsenault^{a,*}, Sam Harper^{a,b}, Arijit Nandi^{a,b}, José M. Mendoza Rodríguez^c, Peter M. Hansen^d, Mira Johri^{e,f}

Vaccine 35 (2017) 951-959

- Compared country ranks for _____ magnitude of wealth-related inequalities in vaccination using extreme groups vs. whole-pop measures.
- Mostly similar, however, some serious inconsistencies:
- Armenia had highest inequality using poor vs. non-poor, but 34th using whole pop measure.
- Moldova ranks 10th using pairwise measure but 38th using whole pop measure.

Moving beyond binary comparisons

Distribution of Socioeconomic Position in a Hypothetical Population

Education Level	%	Cumul%	Range	Midpoint
None	11.93	11.93	0.0 – 11.93	5.97
<primary school<="" td=""><td>15.04</td><td>26.97</td><td>11.93 – 26.97</td><td>19.45</td></primary>	15.04	26.97	11.93 – 26.97	19.45
Primary school	26.86	53.83	26.97 – 53.83	40.40
Secondary school	16.05	69.88	53.83 – 69.88	61.86
>Secondary	30.12	100	69.88 – 100.0	84.94

Summarizing across SEP: Relative Concentration Curve

Cumulative population (%) ranked by socioeconomic position

Summarizing across SEP: Relative Concentration Curve

Cumulative population (%) ranked by socioeconomic position

Relative Concentration Index

Cumulative population (%) ranked by socioeconomic position

Formula for Calculating the Relative Concentration Index

One way of writing the Relative Concentration Index* is

$$RCI = \frac{2}{n\mu} \sum_{i=1}^{n} y_i R_i - 1$$

Where μ is the mean of y_i (e.g., smoking status), R_i is the fractional rank of the ith person in the socioeconomic (e.g., income) distribution

The Absolute Concentration Index simply multiplies RCI by the mean smoking rate:

$$ACI = \mu RCI$$

*(Kakwani et al. 1997)

Example of Relative and Absolute CI

TABLE 6.2.EDUCATIONAL INEQUALITY IN CURRENT SMOKING
AMONG FEMALES, 1965 AND 2003.

Education	Smoking Prevalence	Population Share	Relative Rank	RCI	
1965					
<12 years	23.8%	0.267	0.133	0.008	
12 years	38.7%	0.568	0.551	0.121	
13–15 years	37.1%	0.079	0.875	0.026	
16+ years	35.0%	0.086	0.957	0.029	
Total	34.3%	1.0		0.184	
	F	n Index $ ightarrow$	0.074		
	A	Absolute Concentration Index $ ightarrow$			
2003					
<12 years	21.7%	0.165	0.083	0.003	
12 years	24.0%	0.299	0.315	0.023	
13–15 years	20.2%	0.304	0.616	0.038	
16+ years	9.5%	0.232	0.884	0.020	
Total	19.1%	1.0		0.083	
	F	Relative Concentration Index $ ightarrow$			
	A	Absolute Concentration Index $ ightarrow$			

Note: Authors' calculations of the 1965 and 2003 NHIS.

Cumulative share of population (poorest first)

Cumulative population proportion

Ways of estimating the RCI from micro-data

- Use "convenient covariance" formula: $RCI = 2 * cov(h,r) / \mu$
 - where h is the health/illness variable, r is socioeconomic rank, μ is mean health.
- Can also use regression, after suitable transformation of the left-handside variable:

$$2\sigma_r^2\left(\frac{h_i}{\mu}\right) = \alpha + \beta r_i + \varepsilon_i$$

• Where σ^2 is the variance of the socioeconomic rank (*r_i*) variable, which, for individual-level data is calculated as:

$$r_i = \sum_{j=0}^{i-1} w_j + \frac{w_i}{2}, \quad w_0 = 0$$

- and w is the weight attached to each individual (i.e., 1 / N for data without sample weights.)
- The coefficient β above provides a direct estimate of the RCI and its SE.

Stata example: RCI

```
clear
input class pop smokers
                                            class
                                                              smokers
                                                                         rate
                                                                                   rank
                                                                                           easyrank
                                                      pop
1 165 36
                                                 1
                                                                        .2181818
                                                                                    .0825
                                        1
                                                         165
                                                                   36
2 299 72
                                        2
                                                 2
                                                         299
                                                                   72
                                                                        .2408027
                                                                                    .3145
3 304 61
                                        3
                                                 3
                                                         304
                                                                        .2006579
                                                                                     .616
                                                                   61
4 232 22
                                        4
                                                 4
                                                         232
                                                                   22
                                                                        .0948276
                                                                                     .884
end
* rate of smoking
gen rate = smokers/pop
sum rate [fw=pop] // mean smoking
scalar mrate=r(mean)
                        // save this value as a scalar
* create the ranking variable (Method 1)
qui tab class, gen(rclass )
gen rank=.
label var rank "fractional rank in education distribution"
forvalues i = 1/4 {
    local j = i' - 1
     scalar csum0=0
     quietly sum rclass `i' [fw=pop]
     scalar csum`i'=csum`j' + r(mean)
     quietly replace rank=csum`i' - 0.5*r(mean) if rclass `i'==1
drop rclass*
* using -wridit command (Method 2: note that this is much easier!)
```

.0825

.3145

.616

.884

```
wridit class [fw=pop], gen(easyrank)
```
Stata example: convenient regression format

. qui sum easy . scalar var_r . gen lhsu=2*v . reg lhsu eas	rank [fw=pop] ank=r(Var) ar_rank*(rate yrank [fw=pop	/mrate)], cformat	// su // sa // tu (%4.3f)	ummary of ave varia ransforme // co	ranking varia nce as a scala d outcome vari	able ar iable ession	μ)
Source	SS	df	MS		Number of obs	= 1000	
+ Model Residual	1.40584501 .590888386	1 1.4	0584501 0592073		F(1, 998) Prob > F R-squared	= 2374.45 = 0.0000 = 0.7041 = 0.7038	
Total	1.99673339	999 .00	1998732		Root MSE	= .02433	
lhsu	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
easyrank _cons	-0.135 0.222	0.003 0.002	-48.73 140.41	0.000 0.000	-0.140 0.219	-0.129 0.225	

 $\rightarrow 2\sigma_r^2 \left(\frac{h_i}{h_i}\right) = \alpha + \beta r_i + \varepsilon_i$

• The coefficient on the "rank" variable is -0.135, which is equivalent to what we showed for the degree of educational inequality in smoking in 2003 a couple of slides ago. Smoking is more "concentrated" among the lower classes.

RCI: Issues of Interpretation

"Like the Gini, the CI has the disadvantage of lacking a straightforward interpretation in natural units."

-Koolman and van Doorslaer (2004)

ability in the health variable. Although this is valuable information, one may also wish to place an intuitive interpretation on the value of the index. Koolman and van Doorslaer (2004) have shown that multiplying the value of the concentration index by 75 gives the percentage of the health variable that would need to be (linearly) redistributed from the richer half to the poorer half of the population (in the case that health inequality favors the rich) to arrive at a distribution with an index value of zero.

Slope and Relative Index of Inequality (SII, RII)

Socioeconomic position

Average absolute amount of decline in the rate of illness in moving from the bottom to the top of the socioeconomic distribution

SII: Calculation

Regress health outcome (e.g., smoking) on midpoint of socioeconomic categories, weighted by proportion in the population

$$y = \beta_0 + \beta_1(Rank) + \epsilon$$

Slope Index of Inequality = β_1

There is a specific parallel with the RCI by transforming the health variable:

$$2\sigma(rank)^{2*}(y/\mu) = \beta_0 + \beta_1(Rank) + \epsilon$$

Relative Concentration Index = β_1

Stata example: SII

<pre>. reg rate easyrank [fw=pop], cformat(%4.3f) Source SS df MS Number of F(1, 9 Model 2.13874444 1.2.13874444 Prob > E</pre>	Rank in the cu
Source SS df MS Number of	rate Fitted va
Model = 2 1387/4/4 = 1 - 2 1387/4/4 = 0 = 0	obs = 1000 998) = 2374 45
Residual .898932157 998 .000900734 R-squared	= 0.0000 = 0.7041
Adj R-squa Total 3.0376766 999 .003040717 Root MSE	ared = 0.7038 = .03001
rate Coef. Std. Err. t P> t [95% Co	onf. Interval]
easyrank -0.166 0.003 -48.73 0.000 -0.17 _cons 0.274 0.002 140.41 0.000 0.27	73 -0.160 70 0.278

The coefficient on the "rank" variable is the estimated change in the rate of • illness (e.g., smoking) as one moves from the bottom to the top of the class distribution (decreases by 17 percentage points).

Relative Index of Inequality: Example

Relative Index of Inequality = (β_1) / mean(y)

RII =
$$(\beta_1) / y = -16.6 / 19.1 = -87\%$$

This indicates that as one moves from the bottom to the top of class distribution the outcome (smoking) decreases by 87%

Kunst-Mackenbach modification: α / (α + β)

$$RII_{KM} = 27.4 / 10.8 = 2.5$$

Interpreted as the ratio of health for the bottom vs. the top of the socioeconomic distribution (analogous to more traditional RR used in epidemiologic studies)

RCI/ACI or RII/SII?

Wagstaff et al. (1991) demonstrated that the RCI and RII are mathematically related:

RCI = 2 x RII x var(rank)

Before we estimated the RII as 87%, so: 2 * -.871 * var_rank = -.135

This is exactly the RCI we calculated earlier by Stata: . reg lhsu easyrank [fw=pop], cformat(%4.3f) // convenient regression

lhsu	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
easyrank	-0.135	0.003	-48.73	0.000	-0.140	-0.129
_cons	0.222	0.002	140.41	0.000	0.219	0.225

Table 3.9Education-based inequality in contraceptive prevalence (modern
methods) in the Philippines, DHS 1993 and 2008

	Simple measur	es of inequality	Complex measures of inequality			
Survey year	Difference (secondary school or higher – none) (percentage points)	Ratio (secondary school or higher / none)	Slope index of inequality (percentage points)	Concentration index		
1993	20.8	3.9	15.7	0.08		
2008	27.1	4.1	14.3	0.04		

Using complex measures to account for population shifts is particularly important when health inequality monitoring is carried out to assess the effects of social policy. Broad social policies that are successful in alleviating poverty, increasing educational opportunities or creating jobs can result in a decrease in the size of disadvantaged subgroups. Evaluating the impact of such policies on health inequality is often of interest to those involved in the policy-making process. In order to generate measures that can be compared across time, health inequality monitoring should be sensitive to such changes in population characteristics.

Two ways of changing inequality

- Size of social groups will also change SII/RII without mortality change.
- Increasing the size of higher educated groups (e.g., larger share with higher education) increases inequality:

3. Absolute or Relative Inequality?

The Easy Case: Evidence of clear progress

Trends in infant mortality, Brazil and Colombia, 1980-2006

Source: World Development Indicators, 2008

The Easy Case: Evidence of clear progress

Trends in infant mortality, Brazil and Colombia, 1980-2006

Harder case: US Prostate Cancer Mortality Trends

Source: SEER*Stat Database, 2008

Recent Trends in Black-White Disparities in Cancer Mortality

John Oliver L. DeLancey, Michael J. Thun, Ahmedin Jemal, and Elizabeth M. Ward Cancer Epidemiol Biomarkers Prev 2008;17(11). November 2008

"...racial disparities in mortality from cancers potentially affected by screening and treatment increased over most of the interval since 1975."

% Change in RD and excess RR for prostate cancer mortality

Source: SEER*Stat Database, 2008

Trends in racial/ethnic disparities of new AIDS diagnoses in the United States, 1984–2013

Johanna Chapin-Bardales MPH*, Eli Samuel Rosenberg PhD, Patrick Sean Sullivan PhD

Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA

"Racial disparities rose sharply from 1984 to the early 2000s for Blacks...concerningly, we documented a significant increase from 2006 to 2013."

"The increasing trend we observed in the Black-White disparity from 2006 to 2013 likely stemmed from a combination of high HIV incidence among young Black MSM and persistent disparities in the HIV care continuum in recent years"

- Failure to consider the scale on which inequalities are measured can have dramatic impacts on study conclusions.
- This also has broad implications for thinking about explanations for inequality trends.

Source: SEER*Stat, SEER 9 Registries

Black-White Inequalities in Incidence of Liver Cancer, 1990-2008

Source: SEER*Stat, SEER 9 Registries

Not an isolated incident...

BMJ 2012;345:e5774 doi: 10.1136/bmj.e5774 (Published 3 September 2012)

Use of relative and absolute effect measures in reporting health inequalities: structured review

Nicholas B King assistant professor¹, Sam Harper assistant professor², Meredith E Young assistant professor³

	No	Percentage (95% CI)	
Abstract			_
No measure reported	206	60 (55 to 65)	
Only relative measure	122	35 (30 to 41)	
Only absolute measure Both relative and absolute measures		3.8 (1.8 to 5.8)	Among 344 papers or
		0.9 (0.0 to 1.9)	social inequalities
Full text			published in 2009
Only relative measure	258	75 (70 to 80)	<
Absolute risks not reported	119	46 (40 to 52)	-
Absolute risks reported	139	54 (48 to 60)	-
Only absolute measure	61	18 (14 to 22)	-
Both relative and absolute measures	25	7.3 (4.5 to 10)	-

Table 2| Frequency of absolute and relative effect measures

Question for Discussion:

Are absolute or relative inequalities more important?

"Inequality" is an ambiguous concept

"There is no economic theory that tells us that inequality is relative, not absolute. It is not that one concept is right and the other wrong. Nor are they two ways of measuring the same thing. Rather, they are two different concepts."

> -Martin Ravallion, 2004 World Bank Economist

4. Weighting: Should we count individuals equally or social groups equally when evaluating inequality?

Is the amount of inequality the same in these two societies?

Population weighting: should it matter?

Milanovic (2008)

The Reversal of Fortunes: Trends in County Mortality and Cross-County Mortality Disparities in the United States

Majid Ezzati^{1,2*}, Ari B. Friedman², Sandeep C. Kulkarni^{2,3}, Christopher J. L. Murray^{1,2,4}

"We report the standard deviation (SD) of life expectancies of the 2,068 county units in the United States"

"There was a steady increase in mortality inequality across the US counties between 1983 and 1999, resulting from stagnation or increase in mortality among the worst-off segment of the population."

Figure 1. SD of Life Expectancies of the 2,068 County Units in the United States by Sex

Inequality in family income (e.g., as measured by the Gini coefficient) declined in the United States between the 1920s and 1970s, and has increased after that period [49,50]. doi:10.1371/journal.pmed.0050066.g001

TABLE 1 Comparison of Population-Weighted and -Unweighted Measures of Geographic Inequality in Life Expectancy at Birth in the United States, 1969–1973 and 1999–2003

		Life		Measure of Health Inequality		
		Expe at E	ctancy Birth	Unweighted Index of	Weighted Mean Log	
Geographic Unit	Units	Min.	Max.	Disparity	Deviation	
1969-1973						
Census region	4	70.2	72.2	1.67	0.050	
Census division	9	69.7	72.4	1.80	0.072	
State	51	65.9	74.3	4.36	0.137	
County ^a	3,087	56.2	85.0	16.77	0.423	
1999-2003						
Census region	4	76.2	78.5	1.61	0.074	
Census division	9	74.7	78.7	2.02	0.097	
State	51	73.0	80.7	4.43	0.150	
County ^b	3,140	62.0	96.1	20.35	0.379	
% Change, 1969-73	3 to 1993-	2003				
Census region				-3.6%	+48.0% 🛶	Different direction!
Census division				+12.2%	+34.7%	> Different magnitude
State				+1.6%	+9.5%	2
County				+21.2%	-10.4% ←	Different direction!

Issues to consider regarding weighting

- Weighting individuals equally is consistent with practice for estimating population average health, and allows for inequality measures to be responsive to demographic change.
- Weighting social groups equally (and therefore individuals unequally in most cases) may make sense if one is concerned with disproportionate impacts on small or marginalized social groups.

5. Weighting: Do we care where changes in health inequality come from?

Weighting scheme for the Concentration Index

Effect of differential weighting of the poor on child health inequalities

How to summarize this variation by ethnicity?

Figure 2: Influenza vaccine coverage, by ethnic group and availability of a universal influenza vaccination program, in Canadians aged 12–64 years without chronic diseases (2003–2009). Error bars represent 95% confidence intervals.

Quach et al (CMAJ 2012)

Relative Inequality: The Index of Disparity

Measures the <u>mean deviation</u> of the group rates from some reference point as a proportion of that reference point

Formula:

$$ID = \sum_{j=1}^{J} \left(|y_j - y_{ref}| / n \right) / y_{ref}$$

Where y_j is the rate in group j, y_{ref} is the rate for the reference point, and J is the number of groups, or the number of groups minus 1 if one of the groups is the reference point

Source: Pearcy and Keppel. (1999)

J $ID = \sum \left(|y_j - y_{ref}|/n \right) / y_{ref}$ j=1

Quach et al (CMAJ 2012)

Index of Disparity: Calculation

How great is the mean deviation between Andean countries specific infant mortality rates and the total rate as a proportion of the total rate?

Andean Country	Infant mortality rate	l r _i – r _{rp} l			
Bolivia, r ₁	54.0	28.7			
Colombia, r ₂	17.2	8.1			
Ecuador, r ₃	22.3	3.0			
Peru, r ₄	33.4	8.1			
Venezuela, r ₅	18.5	6.8			
Total Rate, r _{rp}	25.3	-			
Sum of the Deviations = $\Sigma r_i - r_{rp} $					
Mean Deviation = $\Sigma r_i - r_{rp} / n$					
Index of Disparity = Mean Deviation / Reference I	$Point = (\Sigma r_i - r_{rp} / n) / r_{rp}$	0.43			

Index of Disparity

- As originally defined, note that *ID* has a few important but potentially modifiable characteristics:
 - Measures relative inequality
 - Does not account for population size of groups
 - Uses best observed health as reference level
- Interpretation is also a little awkward: the average deviation across social groups as a proportion of the reference level
- Are there alternatives?
Health Inequality as Disproportionality

Share of Total Population

Share of Total Health

Relative Inequality: Health Inequality as Disproportionality

Group	Population	Share of Population (p _j)	Deaths	Mortality Rate per I,000	Share of Deaths (s _j)
A	10000	40%	53	5.3	35%
В	6250	25%	30	4.8	20%
С	3750	15%	23	6.1	15%
D	2000	12%	30	10.0	20%
E	500	8%	15	7.5	10%
Total	25000	K	151	6.0	

Entropy-based measures of between-group inequality compare shares of population against shares of health/deaths/behaviors/outcome.

Two Measures of "Entropy" – from Information Theory

- Defined by Theil (1967): Theil index (T) and Mean Log Deviation (MLD) as measures of economic inequality
- Interpretation of *T*: "expected information...which transforms the population shares as prior probabilities into the income [health] shares as posterior probabilities."

$$T = \sum_{j=1}^{J} s_j \left[ln \left(s_j / p_j \right) \right]$$
$$MLD = \sum_{j=1}^{J} p_j \left[ln \left(p_j / s_j \right) \right]$$

Log of the ratio of shares of health to shares of population, weighted by shares of health

Log of the ratio of shares of population to shares of health, weighted by shares of population

Do we care where health improvements come from?

UTILITARIAN VIEW

Adapted from Broome (2008)

6. Reference points for measuring inequality: Different from what?

Changes in Index of Inequality Using Different Reference Points

Example of all social groups moving away from target rate

Movement away from targets may reduce inequality

Jte	NCI Cancer Surveillance Monograph Series Number 7
istiti	Selected Comparisons of Measures of Health Disparities
er In	A Review Using Databases
ance	Relevant to Healthy People 2010 Cancer-Related Objectives
õ	

"we have systematically compared this same set of summary measures of disparity across 22 separate analyses of cancer incidence, mortality, and risk factors and found that, in nearly half of all cases, a substantive judgment about disparity trends required a priori decisions about whether disparities should be measured in absolute or relative terms or whether to use population-weighted versus unweighted disparity measures "

-Harper and Lynch (2007)

Understanding inequality is not only challenging for health

Figure 3.7 Since 1950, intercountry inequality increased, while international inequality declined Figure 3.8 Unlike relative inequality, absolute inequality has been steadily increasing

Indexes, 1970 = 100

Source: Atkinson and Brandolini (2004).

Conclusions

- Measures of health inequality are not value neutral.
 - Scale of measurement (absolute/relative)
 - Weighting: how much and to whom?
 - Reference points: different from what standard?
- The choices above have an important impact on our judgments of both the magnitude of health inequality and whether health inequalities are worsening or improving.
- Monitoring health inequalities requires both precise measurement and value judgments—they are inseparable.
- A suite of health inequality measures is likely necessary to provide a complete description of the magnitude of inequality.