Decomposition Techniques for Social Epidemiology

S Harper

PhD course: Advanced Social Epidemiology, 19th Aug – 23rd Aug, 2019 University of Copenhagen

Overview of Decomposition Techniques

Today:

- Life table decomposition
- Inequality decomposition: Concentration Index
- Decomposing two-group differences: Blinder-Oaxaca

Not covered today, but of interest:

- Effect decomposition (i.e., mediation)
- Decomposition of population rates
- Inequality decomposition: Indexes for Nominal social groups

Decomposition: Moving from Description to Explanation

- Ultimately, we want to know why health inequalities are changing over time—what changed?
 - Risk factors?
 - Demographic composition?
 - Social conditions?
- Unpacking the 'components' of health inequality is an opportunity to better integrate the monitoring of health inequalities with the etiology of health inequalities.
- These techniques often involve various kinds of 'counterfactual' scenarios

Life Table Decomposition

Why Does Life Expectancy Go Up (and Down)?

Source: GapMinder, 2010

Life Expectancy in Former Communist Countries

Contribution of Causes of Death to Romanian LE Change - Men

Contribution of Causes of Death to Romanian LE Change - Women

Linking Decomposition to Specific Health Determinants

"One factor, HIV infection, has behaved in a very specific way in Romania. As we have shown, the increase in deaths among those aged 5–9 is almost entirely attributable to AIDS. In the late 1980s, over 100,000 children were living in so called "orphanages" in Romania. "Micro-transfusions" of blood were commonly administered as treatment for anaemia or malnutrition, in many cases leading to HIV infection."

Trends in the gap in life expectancy between Arabs and Jews in Israel between 1975 and 2004

Wasef Na'amnih,¹ Khitam Muhsen,^{1,2} Jalal Tarabeia,³ Ameed Saabneh⁴ and Manfred S Green^{1,3}*

Understanding the Rapid Increase in Life Expectancy in South Korea

Seungmi Yang, PhD, Young-Ho Khang, MD, PhD, Sam Harper, PhD, George Davey Smith, MD, DSc, David A. Leon, PhD, and John Lynch, PhD

CAUSES AND CONTRIBUTIONS TO DIFFERENCES IN LIFE EXPECTANCY FOR INUIT NUNANGAT AND CANADA, 1994–2003

Letter From Russia

Paul A. Peters

ORIGINAL ARTICLE

Causes of Declining Life Expectancy Health Analysis Division, Statisti in Russia

Received 10 August 2009; Accep

⁷ Francis C. Notzon, PhD; Yuri M. Komarov, MD; Sergei P. Ermakov, PhD; Christopher T. Sempos, PhD; James S. Marks, MD; Elena V. Sempos, MD Figure 1. Life Expectancy at Birth Among Black and White Males and Females in the United States and the Black-White Life Expectancy Gap, 1975-2003

Data taken from the United States Life Tables of the National Center for Health Statistics.⁷

©2007 American Medical Association. All rights reserved.

(Reprinted) JAMA, March 21, 2007-Vol 297, No. 11 1225

Life Expectancy at Birth (years), United States

	Women			Men			
Year	White	Black	Gap	White	Black	Gap	
1993	79.78	74.19	5.59	73.20	64.77	8.44	
2003	80.49	75.94	4.54	75.42	69.09	6.33	
Δ93-03	0.71	1.75	-1.04	2.22	4.32	-2.11	

US Life Table for Black Females, 2003

		Probability		Number	Person-	Total	
		of dying		dying	years lived	number of	
	Length	between	Number	between	between	person-	Life
	of	ages x to	surviving	ages x to	ages x to	years lived	exp at
Age	interval	x+n	to age x	x+n	x+n	above age x	age x
X	n	$_{n}\mathbf{q}_{x}$	n x	${}_{n}d_{x}$	n ^L x	T _x	e _x
0	I	0.0123	100,000	1,229	98,900	7,594,342	75.94
I	4	0.0016	98,77 I	155	394,698	7,495,442	75.89
5	5	0.0009	98,616	88	492,842	7,100,744	72.00
10	5	0.0010	98,528	98	492,389	6,607,902	67.07
15	5	0.0019	98,430	187	491,758	6,115,513	62.13
20	5	0.0035	98,243	345	490,362	5,623,755	57.24
25	5	0.0047	97,898	460	488,415	5,133 ,394	52.44
35	10	0.0105	96,794	1,021	481,552	4,159,267	42.97
45	10	0.0242	94,229	2,277	465,727	3,202,492	33.99
55	10	0.0483	88,782	4,287	433,781	2,284,543	25.73
65	10	0.0976	78,537	7,662	374,209	1,442,517	18.37
75	10	0.2024	60,885	12,321	274,487	738,005	12.12
85	∞	1.0000	34,617	34,617	255,202	255,202	7.37

"Decomposing" Life Expectancy Difference, by Age

"Decomposing" Life Expectancy Difference, by Age

	Black Females, 1993					White Females, 1993				
x	l _x	"L _x	T _x	e _x	l _x	nL _x	T _x	e _x		
0-I	100,000	98,702	7,418,554	74.2	100,000	99,464	7,977,549	79.8		
I-4	98,552	393,515	7,319,853	74.3	99,398	397,269	7,878,085	79.3		
5-9	98,279	490,998	6,926,338	70.5	99,265	496,109	7,480,816	75.4		
 85+	30,497	232,215	232,214	7.6	42,768	296,729	296,729	6.9		
$_{4}\Delta_{1} = \left[\frac{98552}{100000} \times \left(\frac{397269}{99398} - \frac{393515}{98552}\right)\right] + \left[\frac{7480816}{99265} \times \frac{\frac{98552 \times 99265}{99398} - 98279}{100000}\right]$										
$= \left[0.986 \times (3.997 - 3.993)\right] + \left[75.36 \times \frac{98420.13 - 98279}{100000}\right]$										
= 0.004 + 0.106										
=	= 0.110 y	ears								

(Arriaga, 1984)

Males

Females

Decomposing by Age and Cause of Death

Percentage of deaths by cause, 1993

Age	Total Age Effect	White				Black		
X	${}_{n}\Delta_{x}$	Perinatal	CHD	Injuries	• • • • •	Perinatal	CHD	Injuries
00-01	0.68	41.4	2.0	2.9		53.8	2.2	2.3
01-04	0.11	0.9	3.9	35.3		1.2	5.I	31.0
05-09	0.05	0.2	4.2	33.3		0.4	4.5	40.8
• • •								
75-79	0.29	0.0	34.3	1.6		0.0	37.4	1.4
80-84	0.16	0.0	38.8	1.6		0.0	40.0	1.4
85 +	-0.21	0.0	44.6	1.6		0.0	43.3	1.3

"Decomposing" Life Expectancy Differences by Cause

(Arriaga, 1989)

Decomposing by Age and Cause of Death

Thus, 63% (0.42/0.68) of the total contribution among infants is due to the difference between blacks and whites in rates of perinatal death

*Contributed >I week to gap change

Determinants of Socioeconomic Inequalities: Decomposition of the Concentration Index

Decomposition: Moving from Description to Explanation

- The "substance" we want to decompose is health inequality—a difference in health between social groups.
- Ultimately, we want to know <u>why</u> health inequalities are changing over time, or why they differ between populations
 - Risk factors?
 - Demographic composition?
 - Social conditions?
- Unpacking the 'components' of health inequality is an opportunity to better integrate the monitoring of health inequalities with the etiology of health inequalities.
- These techniques often involve various kinds of 'counterfactual' scenarios

The usual approach

- Conventional methods for "explaining" effects of social exposures
 - Estimate crude or demographic-adjusted effect (logit, hazard)
 - Add "conventional" risk factors (physiological, behavioural)
 - Add "novel" risk factors (flavour-of-the-week)
 - Interpret accordingly
- Limitations of conventional approach
 - Often fail to consider entire socioeconomic distribution (typically low vs. high only) in the context of "explanation"
 - Often ignore absolute risk
 - Typically do not provide estimates of the specific contributions of other factors to the "explained" proportion

We want to understanding the components of this:

By estimating something like this:

Relative Concentration Index

Cumulative population (%) ranked by socioeconomic position

Formula for Calculating the Relative Concentration Index

One way of writing the Relative Concentration Index* is

$$RCI = \frac{2}{n\mu} \sum_{i=1}^{n} y_i R_i - 1$$

- Where μ is the mean of y_i (e.g., smoking status), R_i is the fractional rank of the ith person in the socioeconomic (e.g., income) distribution
- The Absolute Concentration Index simply multiplies RCI by the mean smoking rate:

$$ACI = \mu RCI$$

*(Kakwani et al. 1997)

Decomposition of the Concentration Index

On decomposing the causes of health sector inequalities with an application to malnutrition inequalities in Vietnam

Adam Wagstaff^{a,b,*}, Eddy van Doorslaer^e, Naoko Watanabe^a Journal of Econometrics 112 (2003) 207-223

• Recall we can write the *RCI* as:

$$RCI = \frac{2}{n\mu} \sum_{i=1}^{n} y_i R_i - 1$$

 Suppose that one can write a regression equation expressing the health outcome of interest (y_i) as a function of several (k_i) determinants (e.g., age, gender, urban/rural status):

$$y_i = \alpha + \sum_k \beta_k x_{ki} + \varepsilon_i$$

Decomposition of the Concentration Index

• Given that RCI is a function of yi and socioeconomic rank, one can then reexpress the concentration index RCI for y as:

$$RCI = \sum_{k} (\beta_{k} \overline{x}_{k} / \mu) RCI_{k} + gRCI_{\varepsilon} / \mu$$

- Where μ is the mean of y, \overline{x}_k is the mean of x_k , β_k is the regression coefficient for x_k , and RCI_k is the concentration index for x_k .
- The basic ideas here is to determine how much of the overall inequality is due to other factors that are both differentially distributed by income and affect smoking

"Explained" and "unexplained" components

This equation results in 2 components of socioeconomic inequality:

$$RCI = \sum_{k} (\beta_{k} \overline{x}_{k} / \mu) RCI_{k} + gRCI_{\varepsilon} / \mu$$

One part that is due to the association between income and other factors that predict health

The other part is 'unexplained', i.e., inequality that cannot be explained by systematic variation across income groups in the determinants of health.

2 types of "explained" components

The influence of other determinants depends on 2 things:

$$RCI = \sum_{k} \left(\beta_{k} \overline{x}_{k} / \mu \right) RCI_{k} + gRCI_{\varepsilon} / \mu$$

 RCI_k : the strength of the relationship between each factor and income (the concentration index for each determinant)

 $\beta_k \bar{x}_k / \mu$: the strength of the relationship between each factor and health, and its prevalence in the population (also referred to as the 'elasticity' of each factor with respect to health).

Procedure for decomposing the Concentration Index

1. Estimate a regression equation predicting y ('health') from its determinants (β_k)

$$y_i = \alpha + \sum_{i} \beta_k x_{ki} + \varepsilon_i$$

2. Calculate the mean of y (μ) and of each of the determinants (e.g., education, age)

- 3. Calculate the Concentration Index for the health variable (C) each determinant in the equation predicting health (Ck).
 - That is, use each determinant as the "outcome" and estimate a CI for age, CI for education, etc.

Procedure for decomposing the Concentration Index

4. Calculate the absolute contribution of each determinant by multiplying its 'elasticity' by its C:

 $(\beta_k \bar{x}_k/\mu) RCI_k$

5. Calculate the percentage contribution of each determinant:

$$\left[\left(\beta_k \bar{x}_k/\mu\right) R C I_k\right]/R C I$$

A few examples

infant mortality in Iran

Ahmad Reza Hosseinpoor,¹* Eddy Van Doorslaer,² Niko Speybroeck,¹ Mohsen Naghavi,³ Kazem Mohammad,⁴ Reza Majdzadeh,⁴ Bahram Delavar,³ Hamidreza Jamshidi³ and Jeanette Vega¹

Overall Concentration index for economic status and infant mortality = 0.0413

Determinant	Beta	Mean	Ck	Contrib	% of
	coef.	of x		to C	С
History of mother's stillbirth	0.5643	0.0650	-0.1001	.0010	2.5
History of mother's abortion	0.1313	0.2146	0.0396	-0.0003	-0.8
Risky birth interval	0.8028	0.1664	-0.1426	0.0054	13.0
Low economic status	0.2287	0.3634	-0.6366	0.0150	36.2
Mother's illiteracy	0.3088	0.3524	-0.2803	0.0086	20.9
Having a hygienic toilet	-0.1700	0.2916	0.3503	0.0049	11.9
Rural residency	0.1706	0.4470	-0.2663	0.0057	13.9
Total		0.0413	100.0		

Income-Related Health Inequalities in Canada and th United States: A Decomposition Analysis

Kimberlyn M. McGrail, PhD, Eddy van Doorslaer, PhD, Nancy A. Ross, PhD, and Claudia Sanmartin, PhD

а

Income-Related Health Inequalities in Canada and th United States: A Decomposition Analysis

Kimberlyn M. McGrail, PhD, Eddy van Doorslaer, PhD, Nancy A. Ross, PhD, and Claudia Sanmartin, PhD

Explaining the differences in income-related health inequalities across European countries

Age-sex standardized income-related health inequality in self-assessed health across European countries

"The peculiar Danish result does not arise because Denmark has the lowest income inequality in the EU, but because of the complete lack of any (partial) linear association between household income and adult health."

	Germany		Denmark	:	Netherlan	ds	Belgium		Luxembo	ourg	France		UK	
	CI contr	<i>t</i> -val	CI contr	<i>t</i> -val	CI contr	<i>t</i> -val	CI contr	<i>t</i> -val	CI contr	<i>t</i> -val	CI contr	<i>t</i> -val	CI contr	<i>t</i> -val
C (HUI pred)	0.00434	Ļ	0.00938	;	0.00337	,	0.00710		0.01036)	0.00745	5	0.01280	5
$I^* = C - C^*$	0.00461	7.05	0.01062	9.85	0.00372	9.22	0.00579	9.37	0.00955	6.80	0.00788	3 10.25	0.01332	2 14.39
Ln (Inc)	36.7%	2.68	0.9%	0.10	31.6%	2.74	33.9%	4.49	45.8%	3.80	36.1%	3.30	25.8%	4.44
M30-44	-5.0%	-3.90	-4.6%	-4.29	-2.4%	-2.42	2-4.8%	-3.82	2-2.4%	-1.87	-3.0%	-2.94	-2.4%	-3.42
M45-59	-21.0%	-7.10	-8.8%	-5.47	-14.8%	-6.39	-4.5%	-3.50	-1.7%	-0.97	-13.0%	-7.50	-5.0%	-5.05
M60-69	0.3%	0.47	-0.3%	-0.29	-0.8%	-1.13	2.1%	1.79	0.0%	-0.07	-1.3%	-1.26	0.0%	0.12
M70+	0.2%	0.12	0.3%	0.13	1.0%	1.21	5.7%	3.85	1.5%	0.91	1.5%	1.06	0.6%	0.54
F16-29	1.6%	2.15	0.3%	0.56	1.2%	1.39	0.5%	1.01	0.1%	0.24	1.6%	2.74	0.1%	0.27
F30-44	0.5%	0.82	-4.3%	-4.09	2.1%	1.94	-1.1%	-1.22	0.5%	0.40	0.5%	0.58	-0.2%	-0.86
F45-59	-11.6%	-5.18	-6.4%	-4.66	-13.1%	-5.52	-3.5%	-2.42	2-0.7%	-0.28	-11.5%	-6.71	-2.8%	-3.80
F60-69	4.5%	2.84	1.2%	0.72	2.1%	1.81	5.6%	3.10	1.6%	0.95	1.2%	1.11	0.0%	-0.05
F70+	24.3%	5.42	9.2%	2.35	14.3%	4.35	18.4%	5.73	8.9%	2.66	18.4%	6.64	6.0%	2.60
Second educ	0.0%	0.00	-1.0%	-1.12	-0.6%	-0.74	0.5%	1.27	8.4%	3.97	2.7%	3.22	1.6%	2.98
Higher educ	15.6%	4.67	18.1%	5.81	22.1%	4.89	10.9%	3.99	14.7%	3.31	21.1%	6.01	14.2%	7.30
Part-time empl	0.0%	-0.11	0.1%	0.34	-0.8%	-1.59	4.5%	2.33	}		0.1%	0.47	0.0%	-0.19
Self-employed	0.0%	0.02	-0.2%	-0.55	-0.1%	-0.14	-0.4%	-1.20	0.1%	0.21	-0.3%	-0.90	-0.8%	-1.25
Student	-2.5%	-3.01	-1.7%	-2.46	-5.5%	-2.65	-0.5%	-1.28	3-1.8%	-1.88	-1.3%	-2.40	0.3%	1.29

Table 4. Health inequality contributions of regressors per country (in % of HUI conc index, and with bootstrapped *t*-values)

ORIGINAL ARTICLE

Decomposing income-related inequality in cervical screening in 67 countries

Brittany McKinnon · Sam Harper · Spencer Moore

Contribution of education to income-related inequality in screening was highly variable across countries

 Table 4
 Percentage contribution of determinants to income-related inequality in cervical screening, World Health Survey 2002–2003

WHO region	Country	Age	Income	Urban	Marital Status	Education	Recent health care ^a	Unexplained
Africa	Chad	0.1	47.2	5.2	-0.7	-2.1	5.8	58.8
	Côte d'Ivoire	48.1	-0.7	15.8	-14.0	42.6	2.9	12.8
	Ethiopia	-0.6	34.2	9.8	1.4	6.0	2.6	44.4
	Ghana	-3.1	79.4	-6.4	-4.7	12.2	3.2	20.6
	Kenya	0.0	61.8	2.3	-4.3	15.3	-0.7	29.8
	Mali	-1.5	32.5	26.1	0.4	0.0	10.9	31.6
	Mauritania	2.0	11.9	18.0	-0.4	-6.4	5.8	42.9
	Mauritius	3.5	87.3	7.3	4.3	-3.0	-6.7	18.1
	Namibia	3.4	59.9	16.2	2.5	4.9	4.2	8.8
	Senegal	-8.9	83.9	2.7	-22.2	50.6	5.9	-20.3
	South Africa	2.4	46.2	14.3	7.2	33.0	-0.7	-2.7
	Swaziland	0.3	65.3	-2.5	0.0	15.7	0.9	20.2
	Zambia	19.4	15.2	26.3	1.2	9.1	0.0	31.1
Americas	Brazil	-2.4	64.5	-2.1	4.5	39.9	4.5	-8.9

Example: Decomposing Socioeconomic Inequality in Current Smoking

Percentage of adults reporting current smoking by income, WHS 2002-2003

Conc curve for smoking

Estimation for a specific factor: Education

Recall the decomposition formula:

$$RCI = \sum_{k=1}^{K} \left(\beta_k \bar{x}_k / \mu \right) RCI_k + gRCI_{\varepsilon} / \mu$$

Estimated β coeff on education (**logit scale**): -.0389 (OR = 0.96)

Marginal effect on **probability/absolute** scale: -.0051 (0.5 pct points)

Mean education: 8.9 yrs Mean smoking rate: 17.5%

With these parameters, the elasticity of smoking with respect to education is: (-.0051 * 8.9 / .175) = -.2582

Interpretation: a 1% increase in education decreases smoking by 26% (not percentage points!). What about the RCI for education?

Conc curve for education

Estimation for a specific factor: Education

Recall the decomposition formula:

$$RCI = \sum_{k=1}^{K} \left(\beta_k \bar{x}_k / \mu \right) RCI_k + gRCI_{\varepsilon} / \mu$$

So the elasticity of smoking (from the previous slide) with respect to education is (-.0051 * 8.9 / .175) = -.2582

Now we have the RCI for education = 0.156

So now we can calculate the contribution of education as: Elasticity * $RCI_{ed} = -.2582 * .156 = -.04$

Thus education accounts for -.04/ -.0939 = 41.6%

Decomposition of Income-Related Inequality in Smoking: Americas region (overall RCI = -0.094)

	Elasticity	Rel Conc Index	Contribution	% Contrib
Age	3.695	0.023	0.084	-89.9%
Age ²	-1.981	0.032	-0.064	67.9%
Male	0.197	-0.055	-0.011	11.5%
BMI	-0.834	0.011	-0.009	9.6%
Urban	0.020	0.076	0.002	-1.6%
Single	0.078	-0.036	-0.003	3.0%
Divorced/Widowed	0.161	-0.120	-0.019	20.7%
Low Phys Activity	0.057	0.069	0.004	-4.2%
Mod Phys Activity	-0.023	0.025	-0.001	0.6%
Low Alcohol Consumption	0.131	0.123	0.016	-17.1%
Mod/Hi Alcohol Consumption	0.019	0.081	0.002	-1.6%
Low Fruit/Veg Consumption	0.029	-0.066	-0.002	2.0%
Self-Reported Health Good	-0.001	0.040	0.000	0.1%
Self-Reported Health Moderate	-0.043	-0.079	0.003	-3.6%
Self-Reported Health Bad/Very Bad	0.004	-0.208	-0.001	0.9%
Education	-0.250	0.156	-0.039	41.6%
Permanent Income	-0.809	0.054	-0.044	46.4%
Residual			-0.013	

Contrasting components of income-related inequality

	Elasticity	RCI	Contribution	% Contribution
Western Pacific				
Income	-0.5 I	0.065	-0.033	43.7%
Urbanicity	0.06	0.252	0.016	-20.8%
Education	-0.43	0.096	-0.041	54.5%
Americas				
Income	-0.81	0.054	-0.044	46.4%
Urbanicity	0.02	0.076	0.002	-1.6%
Education	-0.25	0.156	-0.039	41.6%

What does this imply for interventions to reduce income-related inequalities?

Aggregate contribution of explanatory factors to incomerelated inequalities in current smoking by WHO Region

Caveats for decomposition of the Concentration Index

- Decomposition results will be sensitive to the choice of determinants included (i.e., how well-specified the model is for predicting y).
- The regression equations are predictive and not causal models.
- Main utility is not in estimating the potential impact on y of changing the distribution of socioeconomic position, but in indicating the potential role that other factors may play in generating socioeconomic inequalities in health.

Determinants of Mean Differences: Blinder-Oaxaca Decomposition

Idea

- The core idea is to explain the distribution of the outcome variable in question by a set of factors that vary systematically with exposure status.
- Thus, we want to know, on average, why the mean level of health or disease differs between exposed and unexposed groups.
- Since, for most health outcomes there are multiple determinants, we may want to know which of these determinants plays more or less important roles in explaining the difference in average outcomes.
- "Unpacking" or "decomposing" difference.

Brief note on interpretation

- Decomposition methods are based on regression analyses, and thus all of the usual caveats about good specification apply
- If regressions are purely descriptive, they reveal the associations that characterize the health inequality
 - Then inequality is explained in a statistical sense but implications for policies to reduce inequality are limited
- If data allow identification of causal effects, then the factors that generate the inequality are identified
 - Then one can (potentially) draw conclusions about how policies would impact on inequality

Blinder-Oaxaca: Basic idea

Two potential sources of mean differences in outcomes

1. Differences in the prevalence of determinants of outcome

2. Differences in the effect of a given determinant on the outcome (i.e., effect measure modification)

ORIGINAL PAPER

Inequalities in the use of health services between immigrants and the native population in Spain: what is driving the differences?

Dolores Jiménez-Rubio · Cristina Hernández-Quevedo

Abstract In Spain, a growing body of literature has drawn attention to analysing the differences in health and health resource utilisation of immigrants relative to the autochthonous population. The results of these studies generally find substantial variations in health-related patterns between both population groups. In this study, we use the Oaxaca-Blinder decomposition technique to explore to what extent disparities in the probability of using medical care use can be attributed to differences in the determinants of use due to, e.g. a different demographic structure of the immigrant collective, rather than to a different effect of health care use determinants by nationality, holding all other factors equal. Our findings show that unexplained factors associated to immigrant status determine to a great extent disparities in the probability of using hospital, specialist and emergency services of immigrants relative to Spaniards, while individual characteristics, in particular self-reported health and chronic conditions, are much more important in explaining the differences in the probability of using general practitioner services between immigrants and Spaniards.

N.B.: 2 ways of expressing the mean difference

The overall gap between exposed and unexposed can be written as a function of differences the respective beta coefficients, evaluated at the mean for each group:

$$y^{exp} - y^{unexp} = \beta^{exp} \bar{x}^{exp} - \beta^{unexp} \bar{x}^{unexp}$$

This way:

$$y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{unexp} + \Delta \beta x^{exp}$$

where
$$\Delta \bar{x} = \bar{x}^{exp} - \bar{x}^{unexp}$$
 and $\Delta \beta = \beta exp - \beta unexp$

or, equivalently:

$$y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{exp} + \Delta \beta x^{unexp}$$

First method: $y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{unexp} + \Delta \beta x^{exp}$

Second method: $y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{exp} + \Delta \beta x^{unexp}$

- The two methods are equally valid
- In the first, the differences in the x's are weighted by the coefficients of the unexposed group and the differences in the coefficients are weighted by the x's of the exposed group:

$$y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{unexp} + \Delta \beta x^{exp}$$

 whereas, in the second, the differences in the x's are weighted by the coefficients of the exposed group and the differences in the coefficients are weighted by the x's of the unexposed group.

$$y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{exp} + \Delta \beta x^{unexp}$$

 General decomposition formula shows the mean gap as deriving from a difference in endowments (E), a gap in coefficients (C), and a gap arising from the interaction of endowments and coefficients (CE):

$$y^{exp} - y^{unexp} = \Delta \bar{x}\beta^{exp} + \Delta \beta x^{exp} + \Delta \bar{x}\Delta\beta$$
$$= E + C + CE$$

• Method 1 includes interaction with "explained" part:

$$y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{unexp} + \Delta \beta x^{exp}$$
$$= (E + CE) + C$$

• Method 2 includes interaction with "unexplained" part:

$$y^{exp} - y^{unexp} = \Delta \bar{x} \beta^{exp} + \Delta \beta x^{unexp}$$
$$= E + (CE + C)$$

Example: Decomposing Educational Differences in Blood Pressure

Basic question

- What is the average difference in blood pressure between those with low vs. high education?
- How much of this difference is due to the fact that determinants of blood pressure (e.g., BMI, smoking, demographics) differ between low and high educated groups?
- Any residual difference is due to educational differences in the associations of risk factors for blood pressure.

Example data

- US NHANES follow up survey (1988-2006), baseline data
- Systolic blood pressure as outcome (mmHg)
- Overall difference by education (0: >=12y educ, 1: <12y educ)
- Potential determinants (the Xs)
 - age (years)
 - age squared
 - race (1 = non-white, 0 = other)
 - marital status (1=married, 0=other)
 - body mass index (kg/m^2)
 - smoking (1=current smoker, 0=other)

Differences in determinants

• Lower educated have higher BMI and are more likely to be smokers, as well as being older

	Covariate means						
	<12	y Educ	>=12	2y Educ			
Variable	\overline{x}	$SD(\overline{x})$	\overline{x}	$SD(\overline{x})$			
Age	44.6	18.7	40.9	15.8			
Age*Age	2338	1705	1920	1436			
Non-white	0.33	0.47	0.36	0.48			
Married	0.42	0.49	0.40	0.49			
BMI	27.4	5.6	26.9	5.6			
Smoker	0.31	0.46	0.25	0.43			

Differences in coefficients

- BMI and smoking both have *larger* coefficients for the better educated group.
- Age has a slightly stronger association for the less educated.

	Regression coefficients						
	<12y	Educ	>=12	y Educ			
Variable	β	$SE(\beta)$	eta	$SE(\beta)$			
Age	0.60	0.01	0.53	0.01			
Age*Age	0.00	0.00	0.01	0.00			
Non-white	2.17	0.44	2.43	0.31			
Married	0.92	0.44	0.89	0.32			
BMI	0.38	0.04	0.61	0.02			
Smoker	0.73	0.44	1.10	0.33			
Intercept	110.86	1.11	102.20	0.74			

			Coeffic	cients used ir	1 decom	position:	
		<12y	Educ	>=12y	Educ	Pool	ed
	SBP (mmHg)	Est.	SE	Est.	SE	Est.	SE
	>=12y Educ	125.23	0.25	125.23	0.25	121.03	0.17
	<12y Educ	125.23	0.25	125.23	0.25	125.23	0.25
	Difference	-4.20	0.30	-4.20	0.30	-4.20	0.30
	Δ due to:						
Contribution	Covariate Means	-2.77	0.20	-2.88	0.19	-2.85	0.19
of covariate	Age	-2.14	0.17	-1.89	0.16	-2.00	0.16
differences	Age*Age	-0.46	0.08	-0.69	0.07	-0.59	0.06
	Non-white	0.07	0.02	0.07	0.02	0.07	0.02
	Married	-0.02	0.01	-0.02	0.01	-0.02	0.01
	BMI	-0.18	0.04	-0.29	0.06	-0.25	0.05
	Smoker	-0.04	0.03	-0.06	0.02	-0.06	0.02
Contribution —	Coefficients	-1.29	0.25	-1.40	0.26	-1.32	0.25
of coefficient	Age	-0.13	0.03	0.11	0.03	-0.02	0.01
differences	Age*Age	0.79	0.35	0.56	0.25	0.69	0.32
	Non-white	0.08	0.18	0.09	0.19	0.08	0.19
	Married	-0.01	0.23	-0.01	0.21	-0.01	0.23
	BMI	0.06	0.02	-0.05	0.02	0.02	0.01
Interaction	Smoker	0.11	0.17	0.09	0.14	0.11	0.16
between	Intercept	-2.20	0.48	-2.20	0.48	-2.20	0.47
coefficients							
and covariates ——	Interaction	-0.11	0.11	0.11	0.11		

			Coeffi				
		<12y	Educ				
	SBP (mmHg)	Est.	SE				
	>=12y Educ	125.23	0.25				
	<12y Educ	125.23	0.25		SPD among the low		
	Difference	-4.20	0.30		oducated aroup would be		
	Δ due to:				2.9 mmUg lower if they had		
	Covariate Means	-2.77 🔺	0.20		2.0 IIIIII uney na		
of covariate	Age	-2.14	0.17		the same covariate		
differences	Age*Age	-0.46	0.08		characteristics as the higher		
	Non-white	0.07	0.02		educated.		
	Married	-0.02	0.01	\mathbf{i}			
	BMI	-0.18	0.04		Most of this difference		
	Smoker	-0.04	0.03		comes from differences in		
					the distribution of age.		
	Coefficients	-1.29	0.25				
	Age	-0.13	0.03		Why positive? This means		
	Age*Age	0.79	0.35		that the SBP difference		
	Non-white	0.08	0.18		would be even larger if the		
	Married	-0.01	0.23		low educated had the same		
	BMI	0.06	0.02		percentage non-white as the		
	Smoker	0.11	0.17		higher educated		
	Intercept	-2.20	0.48		ingrior oddoddod.		
	Interaction	-0.11	0.11				

			Coeffi	
		<12y	Educ	
	SBP (mmHg)	Est.	SE	
	>=12y Educ	125.23	0.25	
	<12y Educ	125.23	0.25	
	Difference	-4.20	0.30	
	Δ due to:			
	Covariate Means	-2.77	0.20	
	Age	-2.14	0.17	
	Age*Age	-0.46	0.08	
	Non-white	0.07	0.02	
	Married	-0.02	0.01	
	BMI	-0.18	0.04	
	Smoker	-0.04	0.03	
		×		
ontribution	Coefficients	-1.29	0.25	/
f coefficient	Age	-0.13	0.03	
fferences	Age*Age	0.79	0.35	
	Non-white	0.08	0.18	
	Married	-0.01	9.23	
	BMI	0.06 🗡	0.02	
	Smoker	0.11	0.17	
	Intercept	-2.20	0.48	
	Interaction	-0.11	0.11	

d

SBP among the low educated group would be 1.3 mmHg lower if they had the same regression coefficients as the higher educated.

Most of this difference is captured by the intercept (i.e., unmeasured factors).

Why positive? This means that the SBP difference would be even larger if smoking had the same effect in low educated as it does in the higher educated.

			Coeffi	icients used ir	1 decon	position:	
		<12y	Educ	>=12y	Educ	Pool	ed
	SBP (mmHg)	Est.	SE	Est.	SE	Est.	SE
	>=12y Educ	125.23	0.25	125.23	0.25	121.03	0.17
-	<12y Educ	125.23	0.25	125.23	0.25	125.23	0.25
	Difference	-4.20	0.30	-4.20	0.30	-4.20	0.30
	Δ due to:						
Similar results if	Covariate Means	-2.77	0.20	-2.88	0.19	-2.85	0.19
we use the	Age	-2.14	0.17	-1.89	0.16	-2.00	0.16
coefficients of the	Age*Age	-0.46	0.08	-0.69	0.07	-0.59	0.06
higher educated	Non-white	0.07	0.02	0.07	0.02	0.07	0.02
to weight the	Married	-0.02	0.01	-0.02	0.01	-0.02	0.01
covariate	BMI	-0.18	0.04	-0.29	0.06	-0.25	0.05
differences	Smoker	-0.04	0.03	-0.06	0.02	-0.06	0.02
differences							
	Coefficients	-1.29	0.25	-1.40	0.26	-1.32	0.25
	Age	-0.13	0.03	0.11	0.03	-0.02	0.01
	Age*Age	0.79	0.35	0.56	0.25	0.69	0.32
	Non-white	0.08	0.18	0.09	0.19	0.08	0.19
	Married	-0.01	0.23	-0.01	0.21	-0.01	0.23
	BMI	0.06	0.02	-0.05	0.02	0.02	0.01
	Smoker	0.11	0.17	0.09	0.14	0.11	0.16
	Intercept	-2.20	0.48	-2.20	0.48	-2.20	0.47
	Interaction	0.11	0.11	0.11	0.11		

			Coeffi	cients used ir	n decom	position:	
		<12y	Educ	>=12y	Educ	Pool	ed
	SBP (mmHg)	Est.	SE	Est.	SE	Est.	SE
	>=12y Educ	125.23	0.25	125.23	0.25	121.03	0.17
	<12y Educ	125.23	0.25	125.23	0.25	125.23	0.25
	Difference	-4.20	0.30	-4.20	0.30	-4.20	0.30
	Δ due to:						
Using coefficients	Covariate Means	-2.77	0.20	-2.88	0 19	-2.85	0.19
from a model	Age	-2.14	0.17	-1.89	0.16	-2.00	0.16
pooling both	Age*Age	-0.46	0.08	-0.69	0.07	-0.59	0.06
arouns together	Non-white	0.07	0.02	0.07	0.02	0.07	0.02
also gives similar	Married	-0.02	0.01	-0.02	0.01	-0.02	0.01
roculte	BMI	-0.18	0.04	-0.29	0.06	-0.25	0.05
Tesuits.	Smoker	-0.04	0.03	-0.06	0.02	-0.06	0.02
	Coefficients	-1.29	0.25	-1.40	0.26	-1.32	0.25
No interaction	Age	-0.13	0.03	0.11	0.03	-0.02	0.01
	Age*Age	0.79	0.35	0.56	0.25	0.69	0.32
term because	Non-white	0.08	0.18	0.09	0.19	0.08	0.19
only one set of	Married	-0.01	0.23	-0.01	0.21	-0.01	0.23
coefficients is used for both	BMI	0.06	0.02	-0.05	0.02	0.02	0.01
	Smoker	0.11	0.17	0.09	0.14	0.11	0.16
group	Intercept	-2.20	0.48	-2.20	0 48	-2.20	0.47
predictions.						`	-
	Interaction	0.11	0.11	0.11	0.11		
Caveat: results depend heavily on quality of specification

. oaxaca systolic agec agec2 nonwhite married bmic current male, by(educ12) nodetail

Blinder-Oaxaca decomposition				Number o	of obs	=	15,859
				Model		=	linear
Group 1: educ12	= 0			N of c	obs 1	=	9532
Group 2: educ12	= 1			N of c	obs 2	=	6327
systolic	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
+-							
overall							
group_1	121.0268	.1744272	693.85	0.000	120.0	6849	121.3686
group_2	125.1985	.2500719	500.65	0.000	124.	7084	125.6886
difference	-4.171762	.3048947	-13.68	0.000	-4.769	9345	-3.57418
endowments	-2.949963	.2080375	-14.18	0.000	-3.3	5771	-2.542217
coefficients	-1.023872	.2494773	-4.10	0.000	-1.512	2839	5349059
interaction	1979264	.1126793	-1.76	0.079	418	7737	.0229209

Adding gender increases the "explained" component (i.e., "endowments") from -2.77 to -2.95, so important consequences for how much of the gap is "unexplained".

Summary

- Various decomposition techniques exist that may be useful for analyzing social determinants of health
 - Life table decomposition—over time or between groups, or both
 - Regression-based decomposition of Concentration Index
 - Oaxaca decomposition of mean health between groups
- All of these techniques make assumptions that need to be evaluated in the course of analysis
- When used properly, decomposition techniques can help to provide key evidence on *why* health inequalities exist and change over time.